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An exact, local expression is obtained for the available energy density for axisymmetric
motion of a compressible, stratified fluid. Under certain stated conditions the available
energy density is positive definite; this fact can be used to demonstrate the stability of
an appropriately defined reference state to finite-amplitude axisymmetric disturbances.
The theory extends certain previous results on available energy and axisymmetric
stability that are valid only for small-amplitude disturbances.

1. Introduction
This paper is concerned with a variant of the available potential energy (APE)

concept of Lorenz (1955). The total potential energy (TPE) of a body of fluid is
defined as the sum of the gravitational potential energy and the internal energy of the
fluid. Lorenz considered a reference state of minimum TPE that could in principle be
achieved, from an actual state, by a mass- and entropy-conserving redistribution of
fluid ‘particles’; however, this redistribution need not necessarily conserve dynamical
properties such as angular momentum. The APE is defined as the difference between
the TPE of the actual state and that of the state of minimum TPE.

The APE therefore sets an upper bound on the energy that is in some sense
‘available’, in a given fluid configuration, for conversion to kinetic energy in any
subsequent motion that conserves mass and entropy. However, in the presence of
further constraints on the subsequent motion, the maximum energy available for such
conversion may well be less than the APE.

For small-amplitude departures of the flow from a statically stable reference state,
Lorenz derived an expression for the APE in the form of an integral over the whole
fluid, in which the integrand is manifestly positive definite. This integrand can be
regarded as a locally defined ‘available potential energy density’.

van Mieghem (1956) considered axisymmetric fluid motions that conserve mass,
entropy, and angular momentum, and take the form of small departures from a steady
axisymmetric reference state. He found an expression for the energy that is available
for conversion into kinetic energy of the meridional motion in this case, in the form of
an integral over the fluid. He showed that the integrand is positive definite when the
reference state satisfies the conditions for symmetric stability. This integrand may be
regarded as a local ‘available energy density’; it includes a contribution associated with
the kinetic energy of the zonal flow, in addition to a potential energy contribution.

Codoban & Shepherd (2003) similarly considered the effect of angular momentum
conservation on the APE concept, but allowed for finite-amplitude disturbances from
a rectilinear reference state for the case of a Boussinesq fluid on an ‘f -plane’. They
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found a local form for the APE density that is positive definite when the reference
state is symmetrically stable and presented a local conservation law for APE density
that is valid even in the presence of eddy fluxes associated with zonally asymmetric
processes.

The paper by Ilin (1991) derived conditions for the finite-amplitude symmetric
stability of an axisymmetric baroclinic vortex, but did not consider the APE concept.

The present paper extends the results of Codoban & Shepherd (2003) to
compressible flow with an axisymmetric reference state, using an approach similar to
that of Andrews (1981) (hereafter referred to as A81). It also extends the results of van
Mieghem (1956) to finite-amplitude disturbances, and provides stability conditions
that have a clearer physical interpretation than those of Ilin (1991). The theory
described here is relevant, for example, to axisymmetric flows in idealized models
of terrestrial atmospheric and oceanic vortices, and of vortices in other planetary
atmospheres. An extended version of the theory, briefly outlined in the Appendix, is
relevant to zonally averaged atmospheric flows.

2. Basic equations
The equations for inviscid, adiabatic, compressible flow subject to a potential Φ are

the momentum, continuity and entropy equations,

Du
Dt

+
1

ρ
∇p + ∇Φ = 0, (2.1)

Dρ

Dt
+ ρ∇ · u = 0, (2.2)

and
Ds

Dt
= 0, (2.3)

and the equation of state

ρ−1 = F (s, p). (2.4)

Here u is the fluid velocity, ρ the density (assumed finite and non-zero everywhere), p

the pressure and s the specific entropy; these are all functions of position x and time t .
However, Φ is assumed to depend on position x only. D/Dt is the material derivative
and F is a suitably smooth function. These equations are referred to an inertial frame;
as noted in § 7 below, the extension to a rotating frame is straightforward.

From equations (2.1)–(2.4) the energy equation can be derived in the usual form

ρ
D

Dt

{
1
2
u2 + ε + Φ

}
+ ∇ · (pu) = 0, (2.5)

where ε(s, p) is the specific internal energy. The specific enthalpy H (s, p) = ε + p/ρ

and satisfies

Hs = T = G(s, p) and Hp = ρ−1 = F (s, p) say,

where subscripts s and p denote partial derivatives and G expresses the thermo-
dynamic dependence of the temperature T on s and p; H will be assumed twice
differentiable in s and p. Note that

∇H = T ∇s + ρ−1∇p = G∇s + F∇p. (2.6)

We use cylindrical polar coordinates R, λ, z, where R is the perpendicular distance
from the axis of symmetry, λ the azimuthal angle and z the axial distance. We define
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unit vectors eR , eλ, ez in the coordinate directions. We put u = uλ+um, where uλ = eλu
is the zonal component of the flow and um is the component of flow in the meridional
plane.

The zonal angular momentum per unit mass is m = uR; by expressing (2.1) in
cylindrical coordinates and taking the zonal component only, it can be shown that

Dm

Dt
+

1

ρ

∂p

∂λ
+

∂Φ

∂λ
= 0. (2.7)

This illustrates that m is materially conserved if the flow is zonally symmetric, when
λ-derivatives are identically zero.

We define χ(R) ≡ 1/(2R2) and note that ∇χ = −R−3eR .

3. The reference state
We consider a steady, zonally symmetric reference state R0, in the form of a

‘baroclinic circular vortex’ with a purely zonal flow u = u0 = u0(R, z) eλ, p = p0(R, z),
ρ = ρ0(R, z) and Φ = Φ(R, z). Then (2.1) becomes

u0 · ∇u0 +
1

ρ0

∇p0 + ∇Φ = 0.

The first term equals the centripetal acceleration, and can be written as

u0 · ∇u0 = −u2
0

R
eR = −m2

0

R3
eR = m2

0∇χ.

We put µ = m2, so that

µ0∇χ + ρ−1
0 ∇p0 + ∇Φ = 0. (3.1)

Applying (2.6) to R0 so as to eliminate ρ−1
0 ∇p0 we obtain

µ0∇χ + ∇H0 − G0∇s0 + ∇Φ = 0

where H0 = H (s0, p0), and hence

∇ (µ0χ + H0 + Φ) = χ∇µ0 + G0∇s0. (3.2)

Then defining

C0 ≡ − [µ0χ + H (s0, p0) + Φ] (3.3)

(cf. Ilin 1991) we get

∇C0 = −χ∇µ0 − G0∇s0 (3.4)

so C0 is a function of µ0 and s0 only, say

C0 = C̃(µ0, s0). (3.5)

From (3.4) we obtain

χ = −C̃µ(µ0, s0) and G0 = T (s0, p0) = −C̃s(µ0, s0), (3.6a, b)

where subscripts µ and s denote partial derivatives.
The vorticity of the reference flow is

ω0 = ∇ × u0 = R−1 (−m0zeR + m0Rez) = −R−1eλ × ∇m0

and the potential vorticity of the reference flow is

P0 =
ω0 · ∇s0

ρ0

=
1

ρ0R

∂(m0, s0)

∂(R, z)
=

1

2m0ρ0R

∂(µ0, s0)

∂(R, z)
. (3.7)
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Since χ = χ(R), the scalar product of ez with equation (3.1) implies that

ρ−1
0

(
∂p0

∂z

)
R

+

(
∂Φ

∂z

)
R

= 0; (3.8)

this expresses hydrostatic balance for the reference state.
Also, noting that −C̃µs(µ0, s0) = χs = G0µ from (3.6), we obtain(

∂χ

∂s0

)
µ0

=

(
∂T0

∂µ0

)
s0

. (3.9)

Taking the scalar product of eλ with the curl of (3.2) we obtain(
∂µ0

∂z

)
R

= R3 ∂(T0, s0)

∂(R, z)
= 2m0ρ0R

4P0

(
∂T0

∂µ0

)
s0

, (3.10)

after some manipulation of Jacobians and use of (3.7); we can regard (3.10) as the
‘thermal windshear’ equation for the reference state.

Since ∂p0/∂t = 0 the continuity equation implies

∇ · (p0u) = ρ
D

Dt

(
p0

ρ

)
and so the energy equation (2.5) can be rewritten in the alternative form

ρ
D

Dt

{
1
2
u2 + H − p − p0

ρ
+ Φ

}
+ ∇ · [(p − p0) u] = 0: (3.11)

see also A81 (equations (2.16)–(2.18)), and Bannon (2004, equation (2.7)).

4. Available energy for zonally symmetric flow
Consider now a zonally symmetric but time-varying flow. If friction and non-

adiabatic effects are again neglected, the specific angular momentum and specific
entropy are materially conserved:

Dµ

Dt
= 0,

Ds

Dt
= 0,

and hence any differentiable function of µ and s is also materially conserved. We
shall consider the function C̃(µ, s) defined by equation (3.5); this is well-defined if
the ranges of values of µ and s in the time-varying flow are contained within those
in the reference state R0. If this is not the case, we assume that a suitable analytic
continuation of C̃ can be found. The volume integral

∫
ρC̃ dV , taken over the fluid

domain, is constant in time and is a Casimir invariant: see e.g. Shepherd (1993).
From (3.3) and (3.5) we have

DΦ

Dt
= − D

Dt

{
C̃(µ0, s0) + µ0χ + H (s0, p0)

}
.

Adding DC̃(µ, s)/Dt ≡ 0 to the right of this equation and using (3.6a) we obtain

DΦ

Dt
=

D

Dt

{
C̃(µ, s) − C̃(µ0, s0) + µ0C̃µ(µ0, s0) − H (s0, p0)

}
. (4.1)

The kinetic energy per unit mass is

1
2
u2 = 1

2

(
u2 + u2

m

)
= 1

2

(
m2

R2
+ u2

m

)
= µχ + 1

2
u2

m = −µC̃µ(µ0, s0) + 1
2
u2

m, (4.2)

where (3.6b) has been used in the last expression.
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Combining equations (3.11), (4.1) and (4.2) we therefore obtain the following version
of the energy equation:

ρ
D

Dt

(
1
2
u2

m + A
)

+ ∇ · [(p − p0) u] = 0, (4.3)

where the available energy per unit mass A is defined by

A ≡ C̃(µ, s) − C̃(µ0, s0) − (µ − µ0)C̃µ(µ0, s0) + H (s, p) − H (s0, p0) − p − p0

ρ
. (4.4)

Clearly A is identically zero at each point in the reference state; we shall now show
that, under certain conditions, it is positive definite for all states. We first put A into a
more convenient form A = A1+A2 by subtracting and adding a term (s−s0)C̃s(µ0, s0),
as follows:

A1 ≡ C̃(µ, s) − C̃(µ0, s0) − (µ − µ0)C̃µ(µ0, s0) − (s − s0)C̃s(µ0, s0),

A2 ≡ H (s, p) − H (s0, p0) − p − p0

ρ
+ (s − s0)C̃s(µ0, s0).

The term A1 is in the form noted by Shepherd (1993, equation (10.8)); by Taylor’s
theorem (including the explicit remainder) it is positive definite, even for finite values
of µ − µ0 and s − s0, provided that

C̃µµ > 0, C̃ss > 0, C̃µµC̃ss − C̃2
µs > 0 (4.5)

where subscripts µ and s denote partial derivatives. Note that Taylor’s theorem in
this form requires conditions (4.5) to hold at some values µ1, s1 say, intermediate
between µ0, µ and s0, s, respectively; this in turn requires that the domain in the
(µ, s)-plane where C(µ, s) is defined must be convex. We shall assume that these
conditions hold for all values of these variables encountered by the flow. Since C̃µµ,

C̃ss and C̃µµC̃ss − C̃2
µs are functions of µ and s alone, their values – and hence their

signs – are constant in time at each point in (µ, s)-space. If the conditions (4.5) hold
at any instant throughout the flow, they therefore hold for all times.

We next split the term A2 into two further expressions, A2 = A21 + A22:

A21 ≡ H (s, p) − H (s, p0) − p − p0

ρ
, A22 ≡ H (s, p0) − H (s0, p0) − (s − s0)G(s0, p0),

where (3.6b) has been used again in the final term on the right. The term A21 is
identical to the expression for Π1 of A81, and hence can be written in the form (A81,
equation (3.4))

A21 = −
∫ p

p0

(
p′ − p0

)
Hpp(s, p′) dp′.

This is positive definite provided that Hpp = Fp = −(ρc)−2 < 0, where

c2(s, p) ≡
(

∂p(ρ, s)

∂ρ

)
ρ−1=F (s,p)

,

or equivalently

0 < c2 < ∞, (4.6)

where c(s, p) is the speed of sound. The term A22 is not identical to Π2 of A81, but
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can be written

A22 = H (s, p0) − H (s0, p0) − (s − s0)Hs(s0, p0)

=

∫ s

s0

[
Hs(s

′, p0) − Hs(s0, p0)
]
ds ′ =

∫ s

s0

[
G(s ′, p0) − G(s0, p0)

]
ds ′,

and this is positive definite provided that Gs = Hss = (∂T /∂s)p ≡ T/cp > 0 where cp

is the specific heat capacity at constant pressure. This condition therefore holds for
gases for which

cp > 0 (4.7)

and in particular for an ideal gas: see § 5.1 below.
In summary, the available energy per unit mass A is positive definite at each point

where the conditions (4.5), (4.6) and (4.7) hold.
It should be noted that Ilin (1991), in a study of the finite-amplitude symmetric

stability of a baroclinic vortex, gave expressions equivalent to our A1 and A2 but did
not split A2 in the same manner as done here. He provided conditions for the positive
definiteness of A that are slightly different from ours and that do not lend themselves
to such simple physical interpretations as (4.6) and (4.7) above.

5. Special cases
5.1. Results for an ideal gas

In the case of an ideal gas, we have (see A81)

ρ−1 = F (s, p) = (κcp)e
s/cp p−(1−κ), T = G(s, p) = es/cp pκ, H = cpe

s/cp pκ, (5.1a–c)

where cp is a positive constant, and κ is the specific gas constant divided by cp and
lies between 0 and 1. For convenience the pressure has been normalized by a standard
value.

As in A81 we have

A21 = cpe
s/cp pκ

0 f (p/p0) where f (ξ ) ≡ (1 − κ)ξκ + κξ−(1−κ) − 1.

For ξ > 0 it can be shown that

f (1) = 0; f (ξ ) > 0 for ξ �= 1

(using 0 < κ < 1). This verifies that A21 > 0 for p �= p0.
It can also be shown that

A22 = cpe
s0/cp pκ

0 h((s − s0)/cp) where h(η) ≡ eη − 1 − η. (5.2)

It can be shown that h(η) > 0 for all non-zero η, verifying that A22 > 0 for s �= s0.

5.2. Small-amplitude disturbances: comparison with previous results

In this section we show that, for small-amplitude disturbances of an ideal gas, our
expression for A reduces to that derived by Fjørtoft (1946, 1950), and discussed
by Eliassen & Kleinschmidt (1957, pp. 66–70) and Charney (1973, pp. 142–167), in
the context of the conditions for symmetric stability of an ideal gas. The connection
between the stability criterion and the sign-definiteness of small-amplitude expressions
for ‘available energy’ was apparently first made by van Mieghem (1956).

These authors used a Lagrangian approach, considering infinitesimal meridional
displacements δr of fluid particles from an undisturbed state, S0 say, to a disturbed
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state S. For convenience we follow Charney (1973, p. 149), who showed that
symmetric stability of S0 is assured if the quadratic form (in our notation)

I = I1 + I2

is positive definite for displacements that conserve mass, specific entropy and specific
angular momentum, where

I1 ≡ − 1
2
δr ·

(
∇µ0∇χ +

1

ρ0cp

∇s0∇p0

)
· δr (5.3)

and

I2 ≡ 1

2ρ2
0c

2
0

(δp − δr · ∇p0)
2 . (5.4)

Here δp is the (Lagrangian) change in pressure experienced by a particle during
the small displacement δr(x) from its initial position x in S0. Hence

p(x + δr) = p0(x) + δp(x). (5.5)

Clearly the corresponding Lagrangian changes δµ and δs of the materially conserved
quantities µ and s are zero.

These Lagrangian changes should be contrasted with the ‘Eulerian’ differences at
fixed points between quantities in the disturbed state S and the undisturbed state
S0. Consider for example the Eulerian difference in pressure

�p(x) ≡ p(x) − p0(x).

Using (5.5),

�p(x) = p(x) − p(x + δr) + δp(x) ≈ δp(x) − δr · ∇p(x)

to leading order in the displacement amplitude. But since S is only a small departure
from S0 we can replace p by p0 in the last term, to the same approximation, to
obtain

�p(x) = δp(x) − δr · ∇p0(x) (5.6)

to leading order. Since δµ = δs = 0 we also have

�µ = −δr · ∇µ0 and �s(x) = −δr · ∇s0(x). (5.7)

Using these results we find

2I1 = �µ (δr · ∇χ) +
�s

ρ0cp

(δr · ∇p0) .

We now assume that

J0 ≡ ∂(µ0, s0)

∂(R, z)
�= 0, (5.8)

so that χ(R) and p0(R, z) can alternatively be regarded as functions of µ0 and s0.
(Note that (5.8) implies m0P0 �= 0, by (3.7).) We can therefore write

∇χ =

(
∂χ

∂µ0

)
s0

∇µ0 +

(
∂χ

∂s0

)
µ0

∇s0

and a similar expression for ∇p0 and use equations (5.7) to obtain

2I1 = −�µ

[(
∂χ

∂µ0

)
s0

�µ +

(
∂χ

∂s0

)
µ0

�s

]
− �s

ρ0cp

[(
∂p0

∂µ0

)
s0

�µ +

(
∂p0

∂s0

)
µ0

�s

]
.
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On tidying up, this gives

I1 = − 1
2

(
∂χ

∂µ0

)
s0

(�µ)2 − 1
2

[
1

ρ0cp

(
∂p0

∂µ0

)
s0

+

(
∂χ

∂s0

)
µ0

]
�µ �s − 1

2ρ0cp

(
∂p0

∂s0

)
µ0

(�s)2 .

Moreover, by equations (3.9), (5.1) and the ideal gas law it can be verified that

1

ρ0cp

(
∂p0

∂µ0

)
s0

=

(
∂χ

∂s0

)
µ0

,

so that

I1 = − 1
2

(
∂χ

∂µ0

)
s0

(�µ)2 −
(

∂χ

∂s0

)
µ0

�µ �s − 1

2ρ0cp

(
∂p0

∂s0

)
µ0

(�s)2 . (5.9)

Using the standard conditions for positive definiteness of a quadratic form and
some manipulation of Jacobians, it can be shown that I1 � 0 for all �µ, �s if

∂(χ, p0)

∂(µ0, s0)
> 0 and

(
∂µ0

∂R

)
s0

> 0. (5.10)

Using the hydrostatic equation (3.8) and (5.8), the first of inequalities (5.10) leads to

ρ0J0

(
∂Φ

∂z

)
R

> 0. (5.11)

Moreover it can be shown by manipulation of Jacobians that

J0 =

(
∂µ0

∂R

)
s0

(
∂s0

∂z

)
R

.

A set of sufficient conditions for I1 to be positive definite is therefore(
∂Φ

∂z

)
R

> 0,

(
∂µ0

∂R

)
s0

> 0,

(
∂s0

∂z

)
R

> 0. (5.12)

These correspond, respectively, to the potential increasing in the z-direction (as in the
case of gravity acting in the negative z-direction), the squared angular momentum
increasing in the radial direction on isentropes (Rayleigh’s stability criterion) and the
entropy increasing in the z-direction (static stability): see e.g. Charney (1973). Using
(5.11) these conditions also imply that J0 > 0 and hence, by (3.7), that m0P0 > 0, i.e.
that the product of the angular momentum per unit mass and the potential vorticity
of the reference flow is strictly positive. (Note, incidentally, that the first and third of
conditions (5.12) can be combined in the form(

∂s0

∂Φ

)
R

> 0,

i.e. the specific entropy increases with increasing potential at constant R: this form is
convenient for extensions to spherical geometry, for example.)

Furthermore using (5.6) we can rewrite I2 simply as

I2 =
1

2ρ2
0c

2
0

(�p)2 . (5.13)

This is clearly positive definite provided c2
0 > 0.
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The sum I1 + I2 is therefore positive definite under the stated conditions, and this
implies stability of the reference flow to small-amplitude axisymmetric disturbances.
Further details are given by Charney (1973), for example.

Moreover ρ0(I1 + I2) can be identified with the integrand in van Mieghem’s small-
amplitude expression (12.5) for the ‘available energy for conversion into kinetic energy
of the two-dimensional motion’. Van Mieghem noted that this available energy is
positive when the fluid equilibrium state is stable.

We now compare the expressions (5.3) and (5.4), or equivalently (5.9) and (5.13),
with the results of § 4 by considering the case of small disturbances from the reference
state R0, and evaluating our expressions for A1, A21 and A22 to second order in the
disturbance quantities �µ ≡ µ−µ0, �s ≡ s − s0 and �p ≡ p −p0, all assumed small.
We continue to assume that the fluid is an ideal gas.

For A1 we obtain the usual quadratic terms in a Taylor expansion,

A1 ≈ 1
2
C̃µµ(µ0, s0)(�µ)2 + C̃µs(µ0, s0)�µ �s + 1

2
C̃ss(µ0, s0)(�s)2. (5.14)

From (3.6a) we obtain

C̃µµ(µ0, s0) = −
(

∂χ

∂µ0

)
s0

and C̃µs(µ0, s0) = −
(

∂χ

∂s0

)
µ0

. (5.15)

On the other hand, from (3.6b) we obtain

C̃ss(µ0, s0) = −
(

∂T (s0, p0)

∂s0

)
µ0

= −
(

∂T0

∂s0

)
p0

−
(

∂T0

∂p0

)
s0

(
∂p0

∂s0

)
µ0

and using (5.1a–c) this gives, for an ideal gas,

C̃ss(µ0, s0) = −T0

cp

− 1

ρ0cp

(
∂p0

∂s0

)
µ0

. (5.16)

As in A81, the small-amplitude expression for A21 is

A21 ≈ 1

2ρ2
0c

2
0

(�p)2, (5.17)

where c0 is the sound speed in the reference state. The corresponding expression for
A22 follows from (5.2) and (5.1b), using the fact that h(η) ≈ η2/2 for small η:

A22 ≈ T0

2cp

(�s)2. (5.18)

Combining equations (5.14)–(5.18) and comparing with equations (5.9) and (5.13)
we see that

A1 + A22 ≈ I1 and A21 ≈ I2,

thus verifying that the finite-amplitude expressions of § 4 reduce to those of Fjørtoft
and others in the small-amplitude limit. It should be observed that terms in (�s)2

appear in both A1 and A2.

6. Stability to finite-amplitude axisymmetric disturbances
We integrate (4.3) over the fluid volume, V say, assuming that the boundary of

V is rigid so that u · n = 0 there, where n is the unit normal. Using the continuity
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equation (2.2) this gives

d

dt

∫
V

ρ
(

1
2
u2

m + A
)

dV = 0.

Defining the volume-integrated meridional kinetic energy M and available energy A,
respectively, by

M(t) ≡
∫

V

1
2
ρu2

m dV and A(t) ≡
∫

V

ρA dV,

we obtain, on time-integration from an initial state at time t = 0,

M(t) + A(t) = M(0) + A(0)

and so

M(t) � M(0) + A(0) (6.1)

provided that

A(t) � 0. (6.2)

(Note that A may also be regarded as the pseudoenergy of the fluid: see Codoban &
Shepherd 2003.)

We have already shown in § 4 that if conditions (4.5) hold at t = 0 they will hold
at later times, for zonally symmetric, adiabatic, frictionless flow. We make the further
physically reasonable assumptions that conditions (4.6) and (4.7) also hold for all t .
Under these conditions A(x, t) � 0 for all x and t , so that (6.2) is satisfied for all
t . Hence the initial state is stable to finite-amplitude disturbances, in the Lyapunov
sense that the meridional kinetic energy M(t) remains bounded for all t , by (6.1).
(Note, however, that this argument does not imply that the zonal kinetic energy
K ≡ 1

2

∫
V

ρu2 dV is bounded: it does not, on its own, exclude the possibility that
K might for example grow monotonically at the expense of total potential energy,
without a change in A.)

This situation is similar to, but slightly more complicated than, the zonally
symmetric Boussinesq case on a rotating ‘f -plane’, for which the sole stability
condition is P > 0, where the potential vorticity P is conserved as the flow evolves.
Under adiabatic, frictionless conditions, a flow that is symmetrically stable cannot
evolve into one that is symmetrically unstable: see e.g. Hoskins (1974).

The reference state must be a steady solution of the equations of motion, but is
otherwise somewhat arbitrary (cf. A81). Since the initial state whose stability is to be
investigated must – in any non-trivial case – be one that evolves in time, it cannot
itself be chosen as the reference state; it might, however, be a small-amplitude, or
even a finite-amplitude, perturbation of a suitably defined reference state.

7. Discussion
The results obtained in this paper may readily be extended to a rotating reference

frame and to spherical coordinates; these are particularly relevant for treating models
of global-scale axisymmetric motions on a rotating planet. Following the approach
introduced by Codoban & Shepherd (2003) for a Boussinesq fluid, the concept of an
‘available energy’ may also be extended, at least in a formal sense, to treat the zonally
averaged flow of a compressible fluid in the presence of non-axisymmetric (‘eddy’)
processes and non-adiabatic and frictional processes: brief details are outlined in the
Appendix. This extension is relevant for example to zonally symmetric atmospheric
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models that are mechanically driven but thermally damped. The causality of the
energetics of such models was clarified by Codoban & Shepherd (2003) using a
formalism similar to that presented in the Appendix.

It should be noted that Hamiltonian methods have not explicitly been used in this
paper, although the results must ultimately stem from the underlying Hamiltonian
structure of the conservative case.

It would be interesting to discover whether the available energy concept introduced
here could be extended to non-axisymmetric flows, using conservation of mass, specific
entropy and potential vorticity (but not specific angular momentum), and replacing
C̃(µ, s) by a function of P and s. It is not immediately obvious how this might be
done, however: such a function does not arise naturally from an argument analogous
to that leading to (3.5), since P0 does not figure directly in the momentum equation
for the reference flow.

I acknowledge helpful discussions with T. G. Shepherd on this topic over the past
15 years or so. An anonymous referee kindly drew my attention to the paper by Ilin
(1991) and to the requirement that the domain of C(µ, s) be convex.

Appendix. Inclusion of non-axisymmetric and non-conservative terms
In this appendix we briefly note how the available energy concept is modified in

the presence of zonally asymmetric and non-conservative terms, following Codoban
& Shepherd (2003). To represent these additional effects we rewrite (2.1)–(2.4) in the
form

Dmu
Dt

+
1

ρ
∇p + ∇Φ = X, (A 1)

Dmρ

Dt
+ ρ∇ · u = S, (A 2)

and

Dms

Dt
= Q, (A 3)

and the equation of state

ρ−1 = F (s, p) + E, (A 4)

where the symbols u, ρ, p s and Φ are now taken to represent the zonal means of the
relevant quantities, and the terms X , S, Q and E on the right-hand sides represent the
zonal means of the sums of any ‘eddy flux’ terms and any non-conservative terms such
as friction in (A 1), mass sources or sinks in (A 2) and non-adiabatic heating in (A 3),
and departures from a ‘two-parameter’ equation of state in (A 4). The symbol Dm/Dt

represents ∂/∂t + um · ∇, where um is the zonal mean of the meridional component of
the flow.

We assume that an unforced, steady, zonally symmetric reference state R0 exists,
in the form considered in § 3, so the function C̃ can be defined as before (again using
analytic continuation if necessary).

It can be shown that the angular momentum equation (2.7) is replaced by

Dmm

Dt
= N, (A 5)
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where N is the sum of a term dependent on the zonal component of X and eddy flux
terms. The energy equation (3.11) becomes

ρ
Dm

Dt

{
1
2
u2 + H − p − p0

ρ
+ Φ

}
+ ∇ · [(p − p0) u] = Z1, (A 6)

and (4.3) becomes

ρ
Dm

Dt

(
1
2
u2

m + A
)

+ ∇ · [(p − p0) u] = Z2, (A 7)

where Z1 and Z2 depend on X , S, Q and E and vanish if they are all zero. The
available energy density A is given by the same expression (4.4) as before; it should
be emphasized that it is defined in terms of the zonal means of µ, s, p and ρ.
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